Dense Image Representation with Spatial Pyramid VLAD Coding of CNN for Locally Robust Captioning

نویسندگان

  • Andrew Shin
  • Masataka Yamaguchi
  • Katsunori Ohnishi
  • Tatsuya Harada
چکیده

The workflow of extracting features from images using convolutional neural networks (CNN) and generating captions with recurrent neural networks (RNN) has become a de-facto standard for image captioning task. However, since CNN features are originally designed for classification task, it is mostly concerned with the main conspicuous element of the image, and often fails to correctly convey information on local, secondary elements. We propose to incorporate coding with vector of locally aggregated descriptors (VLAD) on spatial pyramid for CNN features of sub-regions in order to generate image representations that better reflect the local information of the images. Our results show that our method of compact VLAD coding can match CNN features with as little as 3% of dimensionality and, when combined with spatial pyramid, it results in image captions that more accurately take local elements into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Pyramid Convolutional Neural Network for Social Event Detection in Static Image

Social event detection in a static image is a very challenging problem and it’s very useful for internet of things applications including automatic photo organization, ads recommender system, or image captioning. Several publications show that variety of objects, scene, and people can be very ambiguous for the system to decide the event that occurs in the image. We proposed the spatial pyramid ...

متن کامل

Adding spatial distribution clue to aggregated vector in image retrieval

This study proposes a novel algorithm that enhances the distinctiveness of the traditional vector of locally aggregated descriptors (VLAD) using spatial distribution clue of local features. The algorithm introduces a new method to compute the spatial distribution entropy (SDE) of clusters. Unlike conventional methods, this algorithm considers the distribution of full spatial information provide...

متن کامل

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

Crowd Counting via Weighted VLAD on Dense Attribute Feature Maps

Crowd counting is an important task in computer vision, which has many applications in video surveillance. Although the regression-based framework has achieved great improvements for crowd counting, how to improve the discriminative power of image representation is still an open problem. Conventional holistic features used in crowd counting often fail to capture semantic attributes and spatial ...

متن کامل

Image classification using spatial pyramid robust sparse coding

Recently, the sparse coding based codebook learning and local feature encoding have been widely used for image classification. The sparse coding model actually assumes the reconstruction error follows Gaussian or Laplacian distribution, which may not be accurate enough. Besides, the ignorance of spatial information during local feature encoding process also hinders the final image classificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.09046  شماره 

صفحات  -

تاریخ انتشار 2016